{-# OPTIONS --safe --without-K #-} module ag-000H where open import MLTT.Spartan open import UF.SubtypeClassifier open import ag-000F open import ag-000G
In frames, meet is commutative, hence no difference between x ∧ y and y ∧ x
meet-is-comm : (F : Frame 𝓤) → (x y : ⟨ F ⟩) → 𝓤 ̇ meet-is-comm (X , _≤_ , ⊤ , _∧_ , _ ) x y = x ∧ y = y ∧ x prove-meet-is-comm : (F : Frame 𝓤) → (x y : ⟨ F ⟩) → meet-is-comm F x y prove-meet-is-comm (X , _≤_ , ⊤ , _∧_ , ∨ , (_ , _ , _ , split) , (_ , meet , lim , _ , _) ) x y = split (x ∧ y) (y ∧ x) I II where I : ((x ∧ y) ≤ (y ∧ x)) holds I = lim y x (x ∧ y) (meet x y .pr₂) (meet x y .pr₁) II : ((y ∧ x) ≤ (x ∧ y)) holds II = lim x y (y ∧ x) (meet y x .pr₂) (meet y x .pr₁)