« Home

Properties of frames [ag-000H]

{-# OPTIONS --safe --without-K #-}
module ag-000H where

open import MLTT.Spartan
open import UF.SubtypeClassifier
open import ag-000F
open import ag-000G

In frames, meet is commutative, hence no difference between x ∧ y and y ∧ x

meet-is-comm : (F : Frame 𝓤)  (x y :  F )  𝓤 ̇
meet-is-comm (X , _≤_ ,  , _∧_ , _ ) x y = x  y  y  x

prove-meet-is-comm : (F : Frame 𝓤)  (x y :  F )  meet-is-comm F x y
prove-meet-is-comm (X , _≤_ ,  , _∧_ ,  , (_ , _ , _ , split) , (_ , meet , lim , _ , _) ) x y = split (x  y) (y  x) I II
  where
  I : ((x  y)  (y  x)) holds
  I = lim y x (x  y) (meet x y .pr₂) (meet x y .pr₁)
  II : ((y  x)  (x  y)) holds
  II = lim x y (y  x) (meet y x .pr₂) (meet y x .pr₁)