取 category 並令 就可以證明 [Cantor's theorem](math-0059)。我們需要引理
Lemma. no point-surjective morphism [math-0009]
Lemma. no point-surjective morphism [math-0009]
If there exists such that for all , then there has no point-surjective morphism can exist for .
This is a reversed version of Lawvere's fixed point, no need an extra proof.
Proof
存在 令所有 都滿足 ,所以對任何集合 都不存在 的 point-surjective 函數,因此也不存在 。