« Home

Example. 應用到 Cantor's theorem [math-0008]

取 category Sets\bold{Sets} 並令 B=2B = 2 就可以證明 [Cantor's theorem](math-0059)。我們需要引理

Lemma. no point-surjective morphism [math-0009]

If there exists BfBB \xrightarrow{f} B such that fbbf \circ b \ne b for all 1bB1 \xrightarrow{b} B , then there has no point-surjective morphism can exist for AgBAA \xrightarrow{g} B^A .

This is a reversed version of Lawvere's fixed point, no need an extra proof.

Proof

存在 2not22 \xrightarrow{\text{not}} 2 令所有 1b21 \xrightarrow{b} 2 都滿足 notbb\text{not} \circ b \ne b ,所以對任何集合 AA 都不存在 A2AA \to 2^Apoint-surjective 函數,因此也不存在 A2AA \cong 2^A