« Home

presheaves exponential 同構的推導 [21ME]

Topos Theory 的 1.12

X,Y,ZC^X, Y, Z \in \widehat{C} 為 category CC 的 presheaves,那麼

hom(Z,YX)hom(Z×X,Y)\text{hom}(Z, Y^X) \cong \text{hom}(Z \times X, Y)

Proof. [local-0]

hom(Z,YX)hom(colim(hα),YX)(Z 可以表示為 representables 的 colimit)limhom(hα,YX)(contravariant)limhom(hα×X,Y)(YX的定義)hom(colim(hα×X),Y)(contravariant)hom(colim(hα)×X,Y)(()×X preserves colimits in Sets, hence in C^)hom(Z×X,Y)\begin{aligned} \text{hom}(Z, Y^X) &\cong \text{hom}(\text{colim}(h_\alpha), Y^X) \quad (Z \text{ 可以表示為 representables 的 colimit}) \\ &\cong \lim \text{hom}(h_\alpha, Y^X) \quad (\text{contravariant}) \\ &\cong \lim \text{hom}(h_\alpha \times X, Y) \quad (Y^X \text{的定義}) \\ &\cong \text{hom}(\text{colim}(h_\alpha \times X), Y) \quad (\text{contravariant}) \\ &\cong \text{hom}(\text{colim}(h_\alpha) \times X, Y) \quad ((-)\times X \text{ preserves colimits in } \text{Sets} \text{, hence in } \widehat{C}) \\ &\cong \text{hom}(Z \times X, Y) \end{aligned}
  1. ZZPresheaves are colimits of representables 改寫
  2. Contravariant 用到的是 Hom-functor preserves limits