Identify the unit odd dimensional sphere S2n−1 with the submanifold
{(z1,…,zn)∈Cn∣∣z0∣2+⋯+∣zn∣2=1}
an S1-action on S2n−1 given by
eiθ⋅(z1,…,zn)=(eiθz1,…,eiθzn)
The complex projective space CPn−1 is isomorphic to S2n−1/U(1), the group U(1) corresponds to S1. This quotient map is a principal S1 bundle called Hopf bundle.
- [eiθz]∼[z] by definition of CPn−1
- Use Ui:={[z]∈CPn−1∣zi=0} (because ⋃i=0n−1Ui=CPn−1, these describe all points in the projective space). The map πi:π−1(Ui)→S1 defined by
z↦∣zi∣zi
then
πi(eiθ⋅z)=∣eiθz∣eiθz=∣z∣eiθz=eiθ⋅∣z∣z=eiθ⋅πi(z)