The curvature R of a Riemannian manifold (M,g) is a tensor R∈Ω2(End(TM))
R(X,Y)Z:==∇X∇YZ−∇Y∇XZ−∇[X,Y]Z[∇X,∇Y]Z−∇[X,Y]Z
where X,Y,Z are vector fields, ∇ is the Levi-Civita connection of the metric g (see Lectures on the Geometry of Manifolds Proposition 4.1.9.).
In local coordinates (x1,…,xn) we have
Rijkm∂m=R(∂j,∂k)∂i
In terms of the Christoffel symbols we have
Rijkm=∂jΓikm−∂kΓijm+ΓnjmΓjkn−ΓnkmΓijn
Lowering the indices we have a new tensor
Rijkl:=gimRjklm=g(R(∂k,∂l)∂j,∂i)=g(∂i,R(∂k,∂l)∂j)