« Home

Definition. Homotopy extension property (HEP) [math-000O]

A map i:AXi : A \to X of spaces has the homotopy extension property for a space YY if

  1. for each homotopy H:A×IYH : A \times I \to Y
  2. and for each map f:XYf : X \to Y with f(i(a))=H(a,0)f(i(a)) = H(a, 0) for all aAa \in A

there is a homotopy H:X×IYH' : X \times I \to Y such that

H(i(a),t)=H(a,t)H(x,0)=f(x)\begin{align*} &H'(i(a), t) &= &H(a, t) \\ &H'(x, 0) &= &f(x) \end{align*}

for all aAa \in A , xXx \in X and tIt \in I . The idea can be expressed in the following commutative diagram:

figure tex808

The homotopy HH' is called the extension of HH with initial condition ff .