« Home

Proposition. Right adjoint fully faithful <=> counit is isomorphism [math-000Y]

Suppose FGF \dashv G is an adjunction, and G:BAG : B \to A is fully faithful, then counit ε:FG1B\varepsilon : FG \to 1_B is an isomorphism

Proof

Forward direction

To prove counit εB:FG(B)B\varepsilon_B : FG(B) \to B is an isomorphism, we need to find an inverse ε1\varepsilon^{-1} and show pre and post composition of them are identity. Let ε1:=G1η\varepsilon^{-1} := G^{-1}\eta , then we have two targets

  1. ε1ε=idX\varepsilon^{-1} \gg \varepsilon = id_X

    Apply GG to get

    GG1η=Gε1Gε=idG(X)\boxed{G G^{-1} \eta = G \varepsilon^{-1}} \gg G \varepsilon = id_{G(X)}

    hence the target is ηGε=idG(X)\eta \gg G \varepsilon = id_{G(X)} , right triangle fills the target.

  2. εε1=idFG(X)\varepsilon \gg \varepsilon^{-1} = id_{FG(X)}

    Use counit naturality on ε1\varepsilon^{-1} to get

    FηεFG(B)=εBε1=G1ηF \eta \gg \varepsilon_{FG(B)} = \varepsilon_B \gg \boxed{\varepsilon^{-1} = G^{-1}\eta}

    Therefore, we have target FηεFG(B)=idFG(X)F \eta \gg \varepsilon_{FG(B)} = id_{FG(X)} , left triangle fills the target.

Backward direction

For GG is faithful, we want to know if Gf=GgGf = Gg then f=gf = g . We first obtain two equations via naturality of counit:

FGfεY=εXfFGgεY=εXg\begin{align*}FGf \gg \varepsilon_Y = \varepsilon_X \gg f \\ FGg \gg \varepsilon_Y = \varepsilon_X \gg g\end{align*}

Replace GfGf with GgGg then we have εXf=εXg\varepsilon_X \gg f = \varepsilon_X \gg g , counit is an isomorphism and hence left-cancellable, f=gf = g .

For GG is full, we want to show every ff there is a aa such that Ga=fG a = f . Let a=εX1φ1fa = \varepsilon_X^{-1} \gg \varphi^{-1} f (where φ\varphi is the hom-set equivalence of adjunction), this is same as asking

G(εX1)=ηGXG(\varepsilon_X^{-1}) = \eta_{GX}

because isomorphism property, we have

G(εX1)= G(εX1εX)= G(εX1)G(εX)= ηGXG(εX)\begin{align*}&G(\varepsilon_X^{-1}) \\ =\ &G(\varepsilon_X^{-1} \gg \varepsilon_X) \\ =\ &G(\varepsilon_X^{-1}) \gg G(\varepsilon_X) \\ =\ &\eta_{GX} \gg G(\varepsilon_X)\end{align*}

now we use isomorphism to cancel right, so G(εX1)=ηGXG(\varepsilon_X^{-1}) = \eta_{GX} .