« Home

Definition. prime ideal [math-0012]

Let AA be a ring and II be an ideal, the followings are equivalent conditions to say that II is prime

  1. II is prime if abIab \in I than aIa \in I or bIb \in I for all a,bAa,b \in A
  2. II is prime if A/IA / I is an integral domain

Proof

Backward

Let A/IA / I be an integral domain, that's say if x,yA/Ix, y \in A / I and xy=0xy = 0 , then x=0x = 0 or y=0y = 0 . Let (a+I)(b+I)(a + I)(b + I) be the zero element of II (i.e. (0A)+I(0 \in A) + I ), then ab+I=Iab + I = I . Hence a+I=Ia + I = I or b+I=Ib + I = I , implies aIa \in I or bIb \in I .

Forward

Let II be a prime ideal, let

(a+I)(b+I)=0+I=I(a+I)(b+I)=0+I = I

then abIab \in I and therefore, aIa \in I or bIb \in I . Hence a+Ia + I or b+Ib + I is the zero coset in A/IA / I .