« Home

RP1\R P^1 is diffeomorphic to S1S^1 [math-0015]

Construction

  1. Ua=S1(0,1)U_a = S^1 - (0,1) and φa(u,v)=u1v\varphi_a(u,v) = \frac{u}{1-v}
  2. Ub=S1(0,1)U_b = S^1 - (0,-1) and φb(u,v)=u1+v\varphi_b(u,v) = \frac{u}{1+v}

and RP1\R P^1 use

  1. U1={[x:y]x0}U_1 = \{[x:y] \mid x\ne0\} and φ1([x:y])=yx\varphi_1([x:y]) = \frac{y}{x}
  2. U2={[x:y]y0}U_2 = \{[x:y] \mid y\ne0\} and φ1([x:y])=xy\varphi_1([x:y]) = \frac{x}{y}

The diffeomorphism ψ:RP1S1\psi : \R P^1 \to S^1 defined as

ψ(p=[x:y])={φa1φ1 if pU1φb1φ2 if pU2\psi(p=[x:y]) = \begin{cases} \varphi_a^{-1} \circ \varphi_1 \text{ if } p\in U_1 \\ \varphi_b^{-1} \circ \varphi_2 \text{ if } p\in U_2 \end{cases}

Given [x:y][x:y] we have a ratio k=y/xk = y/x , we want to recover a point (u,v)(u,v) on S1S^1 , how to get this inverse map? The idea is

k=u1v    k(1v)=u    k2(1v)2=u2    k2(1v)2+v2=1    k2(12v+v2)+v2=1    (k2+1)v22k2v+k2=1    (k2+1)v22k2v+(k21)=0k = \frac{u}{1-v} \implies k(1-v)=u \\ \implies k^2(1-v)^2=u^2 \\ \implies k^2(1-v)^2 + v^2=1 \\ \implies k^2(1-2v+v^2) + v^2=1 \\ \implies (k^2+1) v^2 - 2k^2v + k^2=1 \\ \implies (k^2+1) v^2 - 2k^2v + (k^2-1)=0

Now we can use quadratic formula to solve vv (and remind that v1v \ne 1 ):

v=2k2±4k44(k2+1)(k21)2(k2+1)=2k2±2k4(k2+1)(k21)2(k2+1)=k2±k4(k2+1)(k21)k2+1=k2±k4(k41)k2+1=k2±1k2+1v = \frac{ 2k^2 \pm \sqrt{4k^4 - 4(k^2+1)(k^2-1)} }{2(k^2+1)} = \frac{2k^2\pm2\sqrt{k^4-(k^2+1)(k^2-1)}}{2(k^2+1)} \\ = \frac{k^2\pm\sqrt{k^4-(k^2+1)(k^2-1)}}{k^2+1} \\ = \frac{k^2\pm\sqrt{k^4-(k^4-1)}}{k^2+1} = \frac{k^2\pm1}{k^2+1}

However, v1v \ne 1 hence

v=k21k2+1v = \frac{k^2-1}{k^2+1}

By this we can see

u=2kk2+1u = \frac{2k}{k^2+1}

Therefore, φa1\varphi_a^{-1} is

φa1(k)=(2kk2+1k21k2+1)\varphi_a^{-1}(k) = \begin{pmatrix} \frac{2k}{k^2+1}\\ \frac{k^2-1}{k^2+1} \end{pmatrix}

The similiar reasoning can show

φb1(k)=(2kk2+11k2k2+1)\varphi_b^{-1}(k) = \begin{pmatrix} \frac{2k}{k^2+1}\\ \frac{1-k^2}{k^2+1} \end{pmatrix}

Hence, for U1U2U_1 \cap U_2 (i.e. x0y0x \ne 0 \land y \ne 0 ) we have

φa1φ1=φb1φ2\varphi_a^{-1} \circ \varphi_1 = \varphi_b^{-1} \circ \varphi_2

By component, first check uu :

2y/xy2/x2+1=2y/x(x2+y2)/x2=2yx2(x2+y2)x=2xyx2+y2and2x/yx2/y2+1=2x/y(x2+y2)/y2=2xy2(x2+y2)y=2xyx2+y2\frac{2 y/x}{y^2/x^2 + 1} = \frac{2 y/x}{(x^2+y^2)/x^2} = \frac{2 y x^2}{(x^2+y^2)x} = \frac{2 xy}{x^2+y^2} \\ \text{and} \\ \frac{2 x/y}{x^2/y^2 + 1} = \frac{2 x/y}{(x^2+y^2)/y^2} = \frac{2 xy^2}{(x^2+y^2)y} = \frac{2 xy}{x^2+y^2}

Then check vv :

(y/x)21(y/x)2+1=y2x2y2+x2and1(x/y)2(x/y)2+1=y2x2x2+y2\frac{(y/x)^2-1}{(y/x)^2+1} = \frac{y^2-x^2}{y^2+x^2} \\ \text{and} \\ \frac{1-(x/y)^2}{(x/y)^2+1} = \frac{y^2-x^2}{x^2+y^2}

So ψ\psi is indeed well defined, and smooth on it domain, the inverse defined as

ψ1(p=(u,v))={φ11φa if pUaφ21φb if pUb\psi^{-1}(p=(u,v)) = \begin{cases} \varphi_1^{-1} \circ \varphi_a \text{ if } p\in U_a \\ \varphi_2^{-1} \circ \varphi_b \text{ if } p\in U_b \end{cases}

where φ11(a)=[1:a]\varphi_1^{-1}(a) = [1 : a] and φ21(b)=[b:1]\varphi_2^{-1}(b) = [b : 1] because the equivalence. These maps are smooth on u,vu,v and agree each other (inverse the ratio because the position) when meet hence well defined. Hence ψ\psi is a diffeomorphism.