« Home

Definition. Covariant Derivative (Linear Connection) [math-HCIJ]

Let EME \to M be a vector bundle. A covariant derivative on EE is a K\mathbb{K}-linear map

:C(E)C(TME)\nabla : C^\infty(E) \to C^\infty(T^*M \otimes E)

such that, for all fC(M)f \in C^\infty(M) and all uC(E)u \in C^\infty(E), we have

(fu)=dfu+fu\nabla(fu) = df \otimes u + f \nabla u

where C(E)C^\infty(E) denotes the space of smooth sections of EE over MM.

Remind that

Hom(TM,E)C(TME)\text{Hom}(T^*M, E) \simeq C^\infty(T^*M \otimes E)

Therefore, u\nabla u has a more traditional view

u:Vect(M)C(E)XXu\begin{aligned} &\nabla u : \text{Vect}(M) \to C^\infty(E) \\ &X \mapsto \nabla_X u \end{aligned}