« Home

Definition. Natural Transformation [math-000N]

Let C\mathcal{C} and D\mathcal{D} be categories, let F,G:CDF, G : \mathcal{C} \to \mathcal{D} be functors. A natural transformation α:FG\alpha : F \Rightarrow G is a function consists of

  1. For each XCX \in \mathcal{C} , there is a morphism αX:F(X)G(X)\alpha_X : F(X) \to G(X) in D\mathcal{D} , called the XX -component of α\alpha
  2. For every morphism f:XYf : X \to Y in C\mathcal{C} , there is a commute diagram
    figure tex808