« Home

測地線方程組推導 [math-0017]

γ(t)\gamma(t) 為一 CC^\infty -affine manifold (Mn,)(M^n, \nabla) 上一 CC^\infty -曲線,我們定義當

dγdtdγdt=0\nabla_{\frac{d\gamma}{dt}} \frac{d\gamma}{dt}=0

對所有 tt 成立時,γ\gamma 為一測地線。只要參考切向量場沿著某一曲線如何被視為平行定義的推廣就可以直觀的看出測地線的幾何意義。

藉由座標 γ(t)=(xi(t))\gamma(t) = (x^i(t)) ,可將 γ\gamma 表達為

dγdt=dxidtxi\frac{d\gamma}{dt} = \frac{d x^i}{dt} \frac{\partial}{\partial x^i}

故推導當 γ\gamma 為一測地線時,有方程式

0=dxidtidxjdtxj=dxidtidxjdtjby linear=dxidt((idxjdt)j+dxjdtij)by Leibniz=dxidt(idxjdt)j+dxidtdxjdtij=dxidtdxjdtij+dxidt(idxjdt)j=dxidtdxjdtij+ddt(dxjdt)jby chain rule=dxidtdxjdtij+d2xjdt2j=dxidtdxjdtij+d2xkdt2k=dxidtdxjdtΓijkk+d2xkdt2kby ij=Γijkk=(dxidtdxjdtΓijk+d2xkdt2)k\begin{aligned} 0 &= \nabla_{\frac{d x^i}{dt} \partial_i}{\frac{d x^j}{dt} \partial x_j} \\ &= \frac{d x^i}{dt} \textcolor{red}{\nabla_{\partial_i}{\frac{d x^j}{dt} \partial_j}} \quad\quad\quad \text{by linear} \\ &= \frac{d x^i}{dt} (\textcolor{red}{(\partial_i \frac{d x^j}{dt}) \partial_j + \frac{d x^j}{dt} \nabla_{\partial_i}{\partial_j}}) \quad \text{by Leibniz} \\ &= \frac{d x^i}{dt}(\partial_i \frac{d x^j}{dt}) \partial_j + \textcolor{blue}{\frac{d x^i}{dt}\frac{d x^j}{dt} \nabla_{\partial_i}{\partial_j}} \\ &= \textcolor{blue}{\frac{d x^i}{dt}\frac{d x^j}{dt} \nabla_{\partial_i}{\partial_j}} + \textcolor{green}{\frac{d x^i}{dt}}(\textcolor{green}{\partial_i} \frac{d x^j}{dt}) \partial_j \\ &= \frac{d x^i}{dt}\frac{d x^j}{dt} \nabla_{\partial_i}{\partial_j} + \textcolor{green}{\frac{d}{dt}}(\frac{d x^j}{dt}) \partial_j \quad \text{by chain rule} \\ &= \frac{d x^i}{dt}\frac{d x^j}{dt} \nabla_{\partial_i}{\partial_j} + \frac{d^2 x^{\textcolor{red}{j}}}{dt^2} \partial_{\textcolor{red}{j}} \\ &= \frac{d x^i}{dt}\frac{d x^j}{dt} \nabla_{\partial_i}{\partial_j} + \frac{d^2 x^k}{dt^2} \partial_k \\ &= \frac{d x^i}{dt}\frac{d x^j}{dt} \Gamma^k_{ij}\textcolor{red}{\partial_k} + \frac{d^2 x^k}{dt^2} \textcolor{red}{\partial_k} \quad \text{by } \nabla_{\partial_i}\partial_j = \Gamma^k_{ij}\partial_k \\ &= (\frac{d x^i}{dt}\frac{d x^j}{dt} \Gamma^k_{ij} + \frac{d^2 x^k}{dt^2}) \textcolor{red}{\partial_k} \end{aligned}

因此測地線方程組就是指

d2xkdt2+dxidtdxjdtΓijk=0,k=1,,n\frac{d^2 x^k}{dt^2} + \frac{d x^i}{dt}\frac{d x^j}{dt} \Gamma^k_{ij} = 0, \quad \forall k=1,\dots,n