« Home

Definition. 切向量場沿曲線平行 (parallel) [math-0018]

γ(t)\gamma(t) 為一 CC^\infty -affine manifold (Mn,)(M^n, \nabla) 上一 CC^\infty -曲線。ZZγ\gamma 上有意義的切向量場(i.e. 對所有 tt ,可以對 tt 可微的指定一個 ZTγ(t)MZ\in T_{\gamma(t)} M

dγdtZ=0\nabla_{\frac{d\gamma}{dt}}Z=0

ZZ 沿 γ\gamma 為平行。

若適當的局部座標為 (xi)(x^i) ,則

γ(t)=(xi(t))Z=Zii\gamma(t) = (x^i(t)) \\ Z=Z^i\partial_i

X=dγdtX = \frac{d\gamma}{dt} (即速度向量),則

dγdtf=dfγdt=df(xi(t))dt=fxidxidt=dxidtif\frac{d\gamma}{dt} f = \frac{d f\circ\gamma}{dt} = \frac{d f(x^i(t))}{dt} = \frac{\partial f}{\partial x^i} \frac{d x^i}{dt} = \frac{d x^i}{dt} \partial_i f

因此

X=dxidtiX = \frac{d x^i}{dt} \partial_i

因此

dγdtZ=X(Zjj)=dxidti(Zjj)=dxidt((iZj)j+Zjij)by Leibniz=dxidt((iZj)j+ZkΓikjj)by Christoffel=dxidt((iZj)+ZkΓikj)j=(dxidt(iZj)+dxidtZkΓikj)j=(ddtZj+dxidtZkΓikj)j=(dZjdt+dxidtΓikjZk)j\begin{aligned} \nabla_{\frac{d\gamma}{dt}}Z &= \nabla_{X} (Z^j \partial_j) = \frac{d x^i}{dt} \nabla_{\partial_i}(Z^j \partial_j) \\ &= \frac{d x^i}{dt} ((\partial_i Z^j) \partial_j + Z^j \nabla_{\partial_i}\partial_j) \quad \text{by Leibniz} \\ &= \frac{d x^i}{dt} ((\partial_i Z^j) \partial_j + Z^k \Gamma^j_{ik} \partial_j) \quad \text{by Christoffel} \\ &= \frac{d x^i}{dt} ((\partial_i Z^j) + Z^k \Gamma^j_{ik}) \partial_j \\ &= (\frac{d x^i}{dt}(\partial_i Z^j) + \frac{d x^i}{dt}Z^k \Gamma^j_{ik}) \partial_j \\ &= (\frac{d}{dt}Z^j + \frac{d x^i}{dt}Z^k \Gamma^j_{ik}) \partial_j \\ &= (\frac{d Z^j}{dt} + \frac{d x^i}{dt}\Gamma^j_{ik} Z^k) \partial_j \end{aligned}

ZZ 沿 γ\gamma 平行的充要條件為滿足一階線性方程組

dZjdt+dxidtΓikjZk,j=1,,n\frac{d Z^j}{dt} + \frac{d x^i}{dt}\Gamma^j_{ik} Z^k, \forall j = 1,\dots,n