« Home

Definition. Parallel transport [math-XU4I]

Let EME \to M be a vector bundle with a connection \nabla. For any smooth path γ:[0,1]M\gamma : [0,1] \to M we will define a linear isomorphism Tγ:Eγ(0)Eγ(1)T_\gamma : E_{\gamma(0)} \to E_{\gamma(1)} called the parallel transport along γ\gamma.

The construction [local-0]

More precisely, we construct a family of linear isomorphisms:

Tt:Eγ(0)Eγ(t)T_t : E_{\gamma(0)} \to E_{\gamma(t)}

for all t[0,1]t \in [0, 1]. Consider arbitrary t[0,1]t \in [0, 1], let u0Eγ(0)u_0 \in E_{\gamma(0)} be a vector, then define ut:=Tt(u0)u_t := T_t(u_0), we know utEγ(t)u_t \in E_{\gamma(t)}. What we are searching is a "constant" path, in the sense that derivative is 00, hence we want

ddtut=0,where ddt=γ˙\nabla_{\frac{d}{dt}} u_t = 0, \quad \text{where } \frac{d}{dt} = \dot{\gamma}

so this suggests a way of defining TtT_t: For any u0Eγ(0)u_0 \in E_{\gamma(0)} and any t[0,1]t \in [0,1], define Tt(u0)T_t(u_0) as the value at tt of the solution of the initial value problem:

{ddtu(t)=0u(0)=u0\begin{cases} \nabla_{\frac{d}{dt}} u(t) = 0 \\ u(0) = u_0 \end{cases}

And this is a system of linear ordinary differential equations in disguise.